摘要:机油压力传感器是通过压阻效应将压力信号转化为电信号的装置。本文通过对油压传感器的结构介绍,分析不同的取压器形式,提出各自的特点。同时结合某型柴油机油压传感器故障案例,通过对传感器进行特性检测、振动分析、装机复试等一系列措施,由浅及深地剖析并较终确定了问题的根本原因,提出改进优化方案,为柴油机上其他传感器的故障分析提供了参考。
一、油压传感器原理和结构组成
油压传感器是通过压阻效应将压力信号转化为电信号的装置,其作用是压力传感器用来进行压力测量及控制,它可以对待测的压力进行精确的测量并适时将参数结果传送至控制器中。
油压传感器主要由取压器、变送电路及电气输出接口三大部分组成。取压器的基本结构均为通过条状电阻感应压力变化,同时通过惠斯通电桥结构将阻值变化放大转化为压差,然后传送至变送电路内进行滤波、放大等处理。在油压的检测过程中,其温度变化不可避免,通常在惠斯通电桥的四个电阻条以外单独做一条温敏电阻,以同步检测敏感电阻所在区域的温度变化,为后续的温漂修正提供温度值。同时,为了防止油压的过冲击的影响,有些产品在取压器前端做一个倒漏斗式的入口,可以很明显的避免和减少油压过冲的影响。常用的油压传感器其主体结构为阻尼器(可选)、螺纹接口、取压器、变送电路、不锈钢外壳、转接头、电气接口等组成。
未来的技术发展将对油压传感器提出更高的要求,其产品特性将向微型化、智能化、专业化的方向发展。微型化的发展方向有益于压力传感器的OEM,减小传感器的体积将使得其在整机的设计中有更大的可选择性;智能化的发展方向避免了后续设备对传感器输出结果的再处理;应用于不同领域的专业化的油压传感器的发展,突出不同行业的应用,对油压传感器的电路设计,整体设计提出了更好的要求(如应用于柴油机燃烧室内部的油压传感器要求传感器工作温度范围高达700℃)。
图1 机油压力传感器结构示意图
二、油压传感器种类
根据不同的取压器形式,可以分为应变片式油压传感器、陶瓷式油压传感器以及溅射薄膜式油压传感器三种。
1、应变片式油压传感器
应变片式油压传感器的特点是其成本低,且适宜于大批量生产。此种油压传感器利用单晶硅的压阻效应,通过惠斯通电桥结构放大压力导致的电阻量变化,从而转化为较终的电压或电阻输出。对于应变片材料本身来说,其压阻效应相较于金属和陶瓷而言更加明显,因此应变片式油压传感器除了具有成本低及适宜于大批量生产的优点意外,还具有测量范围宽、灵敏度高、输出信号强等特点,在低压值的传感器中应用较广。应变片式油压传感器的一个显著的缺点是,应变片材料本身的强度不足,如果环境中有较强的压力冲击,容易直接将应变片击穿,对整个油压控制系统造成损害。当前的使用中,一般应用油或真空将其隔离,以期保证后续电路系统的安全性。
2、陶瓷式油压传感器
陶瓷式油压传感器的核心元件为陶瓷芯体。陶瓷为一种具有抗腐蚀和抗震动等特色的材料,同时其热稳定性要由于应变片材料,其较优工作温度范围可达-40℃到125℃(相比较而言,应变片的较优工作温度范围为-20℃到85℃),且具有长期热稳定性。其一般的测量原理为,将厚膜电阻片制作在陶瓷薄膜表面,陶瓷薄膜受压变形后厚膜电阻的阻值相应的发生变化,从而输出端压差的存在。通过一定的校准后,陶瓷式油压传感器具有长期的温度稳定性和时间稳定性,同时其可应用于气压和水压的测量。
3、溅射薄膜式油压传感器
溅射薄膜式油压传感器是将厚膜电路采用溅射的方法制作在不锈钢薄片的表面。由于溅射本身技术的优越性,厚膜电路和不锈钢之间通过分子键键合,具有长期的稳定性。当前应用广泛的高压油压传感器,大部分均为溅射薄膜式油压传感器,虽然其制造成本高,但由于其精度高,长期稳定性好,温度敏感性好,从而广泛应用于船舶、发电机组。
三、油压传感器实际案例分析
机油压力温度传感器利用压力及热敏电阻温度传感技术输出电信号,信号被ECU采集从而实现测量机油压力和机油温度的功能。作为电子元件,机油压力温度传感器故障类型主要表现为信号不连续、缺失、灵敏度下降和不能准确反映实际参数值等,导致ECU控制柴油机进入跛行回家状态,并可能使其熄火进行自我保护。前期出厂试验过程中,多台某型柴油机机油压力温度传感器就出现此类故障,导致柴油机转速突降,功率不足等问题。下面结合故障案例,逐层剖析,对该问题进行了研究与分析。
某型柴油机在出厂试验过程中多次出现转速突降、功率不足的问题,ECU故障报错为传感器供电错误,通过排查、更换机油压力温度传感器后故障排除,但造成传感器故障的具体原因不明确,存在较大质量隐患。
1、传感器特征点关系
首先依据传感器图纸提供的特性参数对故障件进行了检测。特征点输出关系如下:
(1)温度特性在- 10℃时,其电阻为9395±380Ω;在20℃时,其电阻为2499±84Ω;在80℃时,其电阻为322.5±7.5Ω。
(2)压力特性在绝对压力50kPa下,其电压为0.5V;在绝对压力100kPa下,电压为0.71V;在绝对压力1000kPa下,电压为4.5V。
图2 机油压力传感器温度特性曲线图
图3 机油压力传感器压力特性曲线图
2、特性输出检测结果
(1)1#油压传感器在下故障检测结果:
① 在常温25℃/压力50kPa下,其电压0.505V;在压力366.7kPa下,其电压1.818V;在压力683.3kPa下,其电压3.142V;在压力1000kPa下,其电压4.499V。
② 在常温125℃/压力50kPa下,其电压0.526V;在压力366.7kPa下,其电压1.830V;在压力683.3kPa下,其电压3.123V;在压力1000kPa下,其电压4.506V。
(2)2#油压传感器在下故障检测结果:
在常温25℃或125℃等任何情况下,其电压均为零。
(3)3#油压传感器在下故障检测结果:
① 在常温25℃/压力50kPa下,其电压0.506V;在压力366.7kPa下,其电压1.819V;在压力683.3kPa下,其电压3.144V;在压力1000kPa下,其电压4.494V。
② 在常温125℃/压力50kPa下,其电压0.529V;在压力366.7kPa下,其电压1.835V;在压力683.3kPa下,其电压3.114V;在压力1000kPa下,其电压4.496V。
从以上数据分析,1、3号传感器符合温度及压力特性;2号传感器输出信号异常,需要进一步确认分析。通过观察发现2号传感器柔性导电板有破损,但拆除柔性导电板后,对PCB线路板通电,输出电压依然为0,因此柔性导电板不是失效的原因,对电路图进行逐项排查,发现一个原5.1kΩ的电阻变为800kΩ,相当于断路,显微镜下观察发现电阻有裂痕,并联5.1kΩ电阻后传感器恢复正常。
现场排查传感器生产线,从分离前的线路板可以发现,分板工序手工操作风险度高,若刻意按压5.1kΩ的电阻确实会出现损坏现象,在柴油机振动情况下电阻裂口逐渐加大,阻值随之增大形成断路,较终出现2号传感器故障模式。
3、振动检测与装机复试
因2号故障件电阻断路与振动相关,将特性检测没有异常的1、3号传感器做振动测试,第一次完成后传感器输出信号正常。为确定传感器在柴油机上的状态,进行装机测试。
传感器1在出厂试验中,柴油机转速突然由15000r/min降至699r/min,柴油机扭矩由799.3N·m下降至107N·m,机油压力由530kPa下降至286kPa(1号故障件故障码:0235,故障描述:传感器供电1错误)。前述故障更换机油压力温度传感器后恢复正常。
将1、3号传感器安装在振动台上,再次进行振动测试3,初始传感器输出信号正常,振动过程中两个传感器出现无信号输出现象,故障再现但并非持续存在。在装机测试过程中通过对传感器故障件输入、输出端进行实时监测,发现传感器电源输入端V+与地线GND间发生短路。
4、油压传感器故障维修注意事项
(1)机油压力传感器检测温度为-10℃~40℃;
(2)严格禁止带电插拔机油压力传感器接插件,否则有可能造成机油压力传感器失效;
(3)严格禁止用扳手敲打机油压力传感器任何部位;
(4)禁止用手直接触摸接插件端子;
(5)建议采用套筒扳手搭配规格为24mm的套筒头拆卸机油压力传感器,不建议使用固定
开口扳手;
(6)拔出接插件时,请先往外轻拉卡锁,再向上拔出接插件,禁止用手直接拉拽机油压力传感器接插件线束。
总结:
本文分析了电控柴油机出厂试验时的机油压力传感器故障,由于传感器线路焊接不良引发短路,较终引起柴油机功率不足。鉴于柴油机及整车上各类传感器使用较多,其故障模式与其他传感器也有一定共性,其过程分析方法及解决措施可为今后快速排除此类故障提供一些参考,具有推广借鉴意义。